
Laborbericht - NVS - 5CHIF

Name: Juri Schreib Datum: 2017-01-01

HW-Beschreibung: Projektpartner Julian Palamanshofer

Projektinformationen
Arbeitszeit

Julian Palmanshofer 17 Stunden
Juri Schreib 23 Stunden

Ein Großteil der Zeit waren wir damit beschäftigt, das Meteor Framework kennen zu
lernen und uns mit den Best Practices vertraut zu machen.

Durchgeführte Arbeiten
Julian Palmanshofer

Graphische Benutzeroberfläche
Programmlogik

Juri Schreib

Serverseitige Entwickung
Programmlogik
Client / Server Schnitstelle

Battleship User Documentation
Creating a Game
To create a new Game navigate to the Game configuration Site by clicking on Quick
Play on the Homepage.

In the current Version of Battleship, no game configuration options exist. So continue by
pressing the Submit button

Seite 1 von 15

You will be redirected to another Page that looks like this:

Notice that on the Top, it says that it is waiting for another Player. Look in Joining a
Game to learn how to invite another Player.

Joining a Game
To join an existing Game, the creator has to send you the Link of the current Game by
copying the URL from the Address bar.

After you recieved the URL enter it into a webbrowser and open the Page. You will be
greeted by a Page that looks like this:

Seite 2 von 15

To join the Game, click on the Blue Join Game Button on the top Left corner.

After you clicked it, the Blue Box should disappear for both players.

Both player should see a text appear inside the grey Bar, which tells them who goes
first:

Playing the Games
Placeing ships

In the first phase of the Game you can place your Ships on the Gameboard.

You will see the name and the length of the Ship you place inside the Grey Bar on the
Top.

You can toggle the Rotation of the Ship by clicking on the Horial button

Seite 3 von 15

To place the Ship click on a box inside your Board. Clicking on a Box will put the top left
part of the Ship on the Board.

After placeing the first Ship, the Ship description inside the Grey Bar will change and X
will appear where you set the Ship.

Continue to place all Ships in this fashion

Seite 4 von 15

After you placed all ships, the Ship description will change into a Start Button.

When you press Start, a blue Box will apperar.

It means that only one Player finished placing all ships and pressed the start button.

The Game will proceed after both Players clicked the Start Button.

Playing

After the Game Stars a Second board will appar. On the Top you will see a Box that
indicates which turn it currently is.

Seite 5 von 15

When its your turn use the Bottom board to guess the locations of the opponetn Ships. If
you miss a ship, the box will be colourd blue, if you hit a ship, it will be colored red.

THe guesses of your opponent will be highlited in the top gameboard by grey boxes

Seite 6 von 15

Missed Ship

Seite 7 von 15

Hit Ship

Seite 8 von 15

Highlighted Guesses of your opponent.

After you sunken all ships of your opponents a message will apperar

Seite 9 von 15

You can continue playing after that

Battleship Technical Documentation

Getting Started
Prepare for Development

The Project is written using Meteor. Follow the instructions on the Website to install
Meteor on your system. After that you should be able to execute meteor in the root
directory of this project to install all dependencies and get a test instance running.

Project Structure

Directory Structure

|
|- client
| |- stylesheets /* Stylesheets go here */
| |- main.js /* Import /imports/startup/client */
|
|- server
| |- main.js /* Import /imports/startup/server */
|
|-imports
 |- api /* API: Server publications and Methods */
 | |- [model] /* Name of the Model provided by the API */
 | | |- [model].js /* API definition */

Seite 10 von 15

https://www.meteor.com/

 |
 |- startup
 | |- client
 | | |- index.js /* Import Modules that should be run on the Client */
 | | |- routes.js /* URL Routes declaration */
 | |
 | |- server
 | |- index.js /* Import Modules that should be run on the Server */
 |
 |- ui
 |- layouts /* Layout Templates */
 | |- [layout].html /* html Blaze Template */
 | |- [layout].js /* javascript Blaze Template */
 |
 |- pages /* Page Templates */
 | |- [page].html /* html Blaze Template */
 | |- [page].js /* javascript Blaze Template */

Application Workflow

When a Player generates a new Game a Game Object will be created inside the
Database. As more and more information is collected about the Game, the Model, the
furhter it will be extended. Since Meteor runs on MongoDb we don’t have to define a
fixed schema and are free to do so.

Developing
User Interface

The follwing Packages are available for the client:

https://getbootstrap.com/
https://t4t5.github.io/sweetalert/
https://jquery.com/

Feel free to use them to make your development ecperience easier and to keep the
design consistend.

Logic

Most of the Applicaiton logic is located in the follwing Files:

/imports/ui/pages/game.html
/imports/ui/pages/game.js
/imports/api/game/index,js

If you want to modify the programming logic, the best bet is to start orienting and looking
in the files listed above.

Refer to the Source Code Documentation to gain more insight of the inner workings of
the Project

##Source Code Documentation

Seite 11 von 15

http://localhost:4000/NVS/5CHIF_Schreib_Palmanshofer_Battleship_Aktualisiert/Bootstrap
http://localhost:4000/NVS/5CHIF_Schreib_Palmanshofer_Battleship_Aktualisiert/Sweetalert
http://localhost:4000/NVS/5CHIF_Schreib_Palmanshofer_Battleship_Aktualisiert/jQuery

Modules
Games Module

Location /imports/api/games/games.js

Exports

Games

Type
Mongo.Collection

Publications

games.findByID

Retrieve a Game Object from the Database using its ID

Params
gameID {String} the Database ID of the current Game
Provides
Games.find {function}

Methods

games.create

Adds a new Game Object to the Database

Params
game {Object} the newly gemerated game object
Returns
result {Object} The Result of the Database Query

games.findByID

Adds a new Game Object to the Database

Params
id {String} The Id of the Game Object
Returns
game {Object} game object

games.addOpponent

Adds an Opponent to the an existing Game Object

Params
gameId {String} The Id of the Game Object
sessionId {String} The Id of the Opponents Session
Returns
result {Object} result of the Database Query

Seite 12 von 15

https://docs.meteor.com/api/collections.html

games.addBoard

Adds a Users Board with placed ships to a Game Object

Params
gameId {String} The Id of the Game Object
sessionId {String} Id of the user session
board {Object} The board of the user
Returns
result {Object} result of the Database Query

games.addTurn

Adds a Users Turn (trying to hit an opponents ship) to a Game Object

Params
gameId {String} The Id of the Game Object
sessionId {String} Id of the user session
turn {Object} The turn Object of the User
Returns
result {Object} result of the Database Query

games.checkIfTurnWasHit

Cheks if a Turn hits or missed a Ship

Params
gameId {String} The Id of the Game Object
sessionId {String} Id of the user session
turn {Object} The turn Object of the User
Returns
result {Object} current game object. Will be null when all Ships were misse.

Templates
Game

Location /imports/ui/pages/game.js

Helpers

games

Retrieves a Game Object form the Database

Returns

{Object} Game Model

fullLobby

Param

game {Object} Game Model Returns
{Boolean} true if the current Game has already enough Players

Seite 13 von 15

currentPlayer

Param

game {Object} Game Model Returns
{Boolean} true if the current User is a player in the current Game

determinedOrder

Param

game {Object} Game Model Returns
{Boolean} true if the person who is going first was already determined by the
Server

order

Param

game {Object} Game Model Returns
{String} returns either ‘first’ or ‘second’ depending of the User is going first or
second

spectator

Param

game {Object} Game Model Returns
{Boolean} true if the current game has enough players and the user is not a player

placeShip

Returns

{String} Description of the next Ship that will be placed.

gameStarted

Param

game {Object} Game Model Returns
{Boolean} true if both players submmited their boards and they start to make turns

gameStartInitiated

Param

game {Object} Game Model Returns
{Boolean} true if one player submitted their board

yourtTurn

Param

game {Object} Game Model Returns
{Boolean} true if its the current players turn

Seite 14 von 15

Events

All Events have one event parameter

click .join-game

A new player joins the current Game

click .direction

Toggles between Horizontal and Vertical Ship orientation

click #prepareBoard .gameboard

Places a new Ship on the Players board

click .startGame

Starts the Game, by submitting each Players gameBoard to the Server

click #opponentboard.active .gameboard

executes a new TUrn of the current Player and submits it to the Database

http://nvs.schreib.at/NVS/5CHIF_Schreib_Palmanshofer_Battleship_Aktualisiert/

Seite 15 von 15

https://developer.mozilla.org/en-US/docs/Web/API/Event
http://nvs.schreib.at/NVS/5CHIF_Schreib_Palmanshofer_Battleship_Aktualisiert/

	Laborbericht - NVS - 5CHIF
	Projektinformationen
	Arbeitszeit
	Durchgeführte Arbeiten

	Battleship User Documentation
	Creating a Game
	Joining a Game
	Playing the Games
	Placeing ships
	Playing

	Getting Started
	Prepare for Development
	Project Structure
	Directory Structure

	Application Workflow

	Developing
	User Interface
	Logic

	Modules
	Games Module
	Exports
	Publications
	Methods

	Templates
	Game
	Helpers

	Events
	click .join-game
	click .direction
	click #prepareBoard .gameboard
	click .startGame
	click #opponentboard.active .gameboard

